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Graphical Abstract

Abstract

For more than 100 years, chemical, physical, and material scientists have proposed competing constitutive models to best
haracterize the behavior of natural and man-made materials in response to mechanical loading. Now, computer science offers a
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universal solution: Neural Networks. Neural Networks are powerful function approximators that can learn constitutive relations
from large data without any knowledge of the underlying physics. However, classical Neural Networks entirely ignore a century
of research in constitutive modeling, violate thermodynamic considerations, and fail to predict the behavior outside the training
regime. Here we design a new family of Constitutive Artificial Neural Networks that inherently satisfy common kinematical,
thermodynamical, and physical constraints and, at the same time, constrain the design space of admissible functions to create
robust approximators, even in the presence of sparse data. Towards this goal we revisit the non-linear field theories of mechanics
and reverse-engineer the network input to account for material objectivity, material symmetry and incompressibility; the network
output to enforce thermodynamic consistency; the activation functions to implement physically reasonable restrictions; and
the network architecture to ensure polyconvexity. We demonstrate that this new class of models is a generalization of the
classical neo Hooke, Blatz Ko, Mooney Rivlin, Yeoh, and Demiray models and that the network weights have a clear physical
interpretation in the form of shear moduli, stiffness-like parameters, and exponential coefficients. When trained with classical
benchmark data for rubber under uniaxial tension, biaxial extension, and pure shear, our network autonomously selects the best
constitutive model and learns its set of parameters. Our findings suggest that Constitutive Artificial Neural Networks have the
potential to induce a paradigm shift in constitutive modeling, from user-defined model selection to automated model discovery.
Our source code, data, and examples is available at https://github.com/LivingMatterLab/CANN.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Automated science; Machine learning; Neural Networks; Constitutive Artificial Neural Networks; Constitutive modeling;
Thermodynamics; Automated model discovery

1. Motivation

“What can your Neural Network tell you about the underlying physics?” is the most common question when we
apply Neural Networks to study the behavior of materials and “Nothing”. is the honest and disappointing answer.
This manuscript challenges the notion that Neural Networks can teach us nothing about the physics of a material.
It seeks to integrate more than a century of knowledge in continuum mechanics [1–8] and modern machine
learning [9–11] to create a new family of Constitutive Artificial Neural Networks that inherently satisfy kinematical,
thermodynamical, and physical constraints, and constrain the space of admissible functions to train robustly,
even when data are space. While this general idea is by no means new and builds on several important recent
discoveries [12–15], the true novelty of our Constitutive Artificial Neural Networks is that they autonomously
discover a constitutive model, and, at the same time, learn a set of physically meaningful parameters associated
with it.

Interestingly, the first Neural Network for constitutive modeling approximates the incremental principal strains
in concrete from known principal strains, stresses, and stress increments and is more than three decades old [16]. In
the early days, Neural Networks served merely as regression operators and were commonly viewed as a black box.
The lack of transparency is probably the main reason why these early approaches never really generated momentum
in the constitutive modeling community. More than 20 years later, data-driven constitutive modeling gained new
traction, in part powered by a new computing paradigm, which directly uses experimental data and bypasses
constitutive modeling altogether [17]. While data-driven elasticity builds on a transparent and rigorous mathematical
foundation [18], it can also become fairly complex, especially when expanding the theory to anisotropic [19] or
history-dependent [20] materials. Rather than following this path and eliminate the constitutive model entirely, here
we attempt to build our prior physical knowledge into the Neural Network and learn something about the constitutive
response [21].

Two successful but fundamentally different strategies have emerged to integrate physical knowledge into network
modeling, Physics-Informed Neural Networks that add physics equations as additional terms to the loss function [9]
and Constitutive Artificial Neural Networks that explicitly modify the network input, output, and architecture to
hardwire physical constraints into the network design [14]. The former approach is more general and typically works
well for incorporating ordinary [10] or partial [11] differential equations, while the latter is specifically tailored
towards constitutive equations [22]. In fact, one such Neural Network, with strain invariants as input, free energy
functions as output, and a single hidden layer with logistic activation functions in between, has been proposed
for rubber materials almost two decades ago [23] and recently regained attention in the constitutive modeling
community [24]. While these Constitutive Artificial Neural Networks generally provide excellent fits to experimental
data [25–27], exactly how they should integrate thermodynamic constraints remains a question of ongoing debate.
2
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Thermodynamics-based Artificial Neural Networks a priori build the first and second law of thermodynamics
nto the network architecture and select specific activation functions to ensure compliance with thermodynamic
onstraints [15]. Recent studies suggest that this approach can successfully reproduce the constitutive behavior of
ubber-like materials [28]. Alternative approaches use a regular Artificial Neural Network and ensure thermodynamic
onsistency a posteriori via a pseudo-potential based correction in a post processing step [29]. To demonstrate
he versatility of these different approaches, several recent studies have successfully embedded Neural Networks
ithin a Finite Element Analysis, for example, to model plane rubber sheets [14], sheets with holes [30], or entire

ires [23], the numerical homogenization of discrete lattice structures [31], the deployment of parachutes [12], or
he anisotropic response of skin in reconstructive surgery [32]. Regardless of all these success stories, one limitation
emains: the lack of an intuitive interpretation of the model and its parameters [13].

The general idea of this manuscript is to reverse-engineer a new family of Constitutive Artificial Neural
etworks that are, by design, a generalization of widely used and commonly accepted hyperelastic constitutive
odels [25,26,33–36] with well-defined physical parameters [37,38]. Towards this goal, we review the underlying

inematics in Section 2 and discuss constitutive constraints in Section 3. We then introduce classical Neural
etworks in Section 4 and our new family of Constitutive Artificial Neural Networks in Section 5. In Section 6, we
riefly review the three special homogeneous deformation modes that we use to train our model in Section 7. We
iscuss our results, limitations, and future directions in Section 8 and close with a brief conclusion in Section 9.

. Kinematics

We begin by characterizing the motion of a body and introduce the deformation map ϕ that, at any point in
ime t , maps material particles X from the undeformed configuration to particles, x = ϕ(X, t), in the deformed
onfiguration [1]. To characterize relative deformations within the body, we introduce the deformation gradient F,
he gradient of the deformation map ϕ with respect to the undeformed coordinates X , and its Jacobian J ,

F = ∇Xϕ with J = det(F) > 0 . (1)

ultiplying F with its transpose Ft, either from the left or the right, introduces the right and left Cauchy Green
eformation tensors C and b,

C = F t
· F and b = F · Ft . (2)

n the undeformed state, all three tensors are identical to the unit tensor, F = I , C = I , and b = I , and the
acobian is one, J = 1. A Jacobian smaller than one, 0 < J < 1, denotes compression and a Jacobian larger than
ne, 1 < J , denotes extension.

sotropy. To characterize an isotropic material, we introduce the three principal invariants I1, I2, I3, either in terms
f the deformation gradient F,

I1 = F : F ∂F I1 = 2 F
I2 =

1
2 [I 2

1 − [ Ft
· F ] : [ Ft

· F ]] with ∂F I2 = 2 [ I1 F − F · F t
· F ]

I3 = det (Ft
· F) = J 2 ∂F I3 = 2 I3 F−t ,

(3)

or, equivalently, in terms of the right or left Cauchy Green deformation tensors C or b,

I1 = tr (C) = C : I ∂C I1 = I I1 = tr (b) = b : I ∂b I1 = I
I2 =

1
2 [I 2

1 − C : C] ∂C I2 = I1 I − C or I2 =
1
2 [I 2

1 − b : b] ∂b I2 = I1 I − b
I3 = det (C) = J 2 ∂C I3 = I3 C−t I3 = det (b) = J 2 ∂b I3 = I3 b−t .

(4)

n the undeformed state, F = I , and the three invariants are equal to three and one, I1 = 3, I2 = 3, and I3 = 1.

ear incompressibility. To characterize an isotropic, nearly incompressible material, we perform a multiplicative
ecomposition of deformation gradient, F = J 1/3 I · F̄, into a volumetric part, J 1/3 I , and an isochoric part, F̄ [39],

F̄ = J−1/3 F and J̄ = det(F̄) = 1 , (5)
3
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and introduce the isochoric right and left Cauchy Green deformation tensors C̄ and b̄,

C̄ = F̄ t
· F̄ = J−2/3 C and b̄ = F̄ · F̄ t

= J−2/3 b . (6)

We can then introduce an alternative set of invariants for nearly incompressible materials, Ī1, Ī2, J , in terms of the
deformation gradient F̄,

Ī1 = I1/J 2/3
= F : F/J 2/3 ∂F Ī1 = 2/J 2/3 F −

2
3 Ī1 F−t

Ī2 = I2/J 4/3
=

1
2 [ Ī1 − [Ft

· F] : [Ft
· F]/J 4/3] with ∂F Ī2 = 2/J 2/3 Ī1 F − 2/J 4/3 F · Ft

· F −
4
3 Ī2 F−t

J = det(F) ∂F J = J F−t ,

(7)

r, equivalently, in terms of the right and left Cauchy Green deformation tenors C or b,

Ī1 = I1/J 2/3
= C : I/J 2/3 Ī1 = I1/J 2/3

= b : I/J 2/3

Ī2 = I2/J 4/3
=

1
2 [ Ī1 − C : C/J 4/3] or Ī2 = I2/J 4/3

=
1
2 [ Ī1 − b : b/J 4/3]

J = det1/2(C) J = det1/2(b) .

(8)

erfect incompressibility. To characterize an isotropic, perfectly incompressible material, we recall that the third
nvariant always remains identical to one, I3 = J 2

= 1. This implies that the principal and isochoric invariants are
dentical, I1 = Ī1 and I2 = Ī2, and that the set of invariants reduces to only these two.

ransverse isotropy. To characterize a transversely isotropic material with one constant pronounced direction
with unit normal vector n, we introduce a fourth and fifth invariant [6],

I4 = n · Ft
· F · n = C : N = λ2

n
I5 = n · Ft

· F · Ft
· F · n = [C · C] : N with

∂C I4 = n ⊗ n = N
∂C I5 = n ⊗ C · n + C · n ⊗ n . (9)

ere N = n ⊗ n denotes the structural tensor associated with the pronounced direction n, with a unit length of
n ∥ = 1 in the reference configuration and a stretch of λn = ∥ F · n ∥ in the deformed configuration. In the
ndeformed state, F = I , and the stretch, the fourth and fifth invariants are one, λn = 1 and I4 = 1 and I5 = 1.

. Constitutive equations

In the most general form, constitutive equations in solid mechanics are tensor-valued tensor functions that define
he relation between a stress, for example the Piola or nominal stress, P = limdA→0 ( d f /dA ), as the force d f per

undeformed area dA, and a deformation measure, for example the deformation gradient F [3,7],

P = P(F) . (10)

onceptually, we could use any Neural Network as a function approximator to simply learn the functional relation
etween P and F and many approaches in the literature actually do exactly that [15,16,40]. However, the functions

P(F) that we learn through this approach might be too generic and violate well-known thermodynamical arguments
nd widely-accepted physical constraints [28]. Also, for limited amounts of data, the tensor-valued tensor function

P(F) can be difficult to learn and there is a high risk of overfitting [13]. Our objective is therefore to design a
onstitutive Artificial Neural Network that a priori guarantees thermodynamic consistency of the function P(F),

and, at the same time, conveniently limits the space of admissible functions to ensure robustness and prevent
overfitting when available data are sparse.

Thermodynamic consistency. As a first step towards this goal, we ensure thermodynamically consistency and
guarantee that the Piola stress P inherently satisfies the second law of thermodynamics, the entropy or Clausius–
Duhem inequality [5], D = P : Ḟ−ψ̇ ≥ 0. It states that, for any thermodynamic process, the total change in entropy,
the dissipation D, should always remain greater than or equal to zero, D ≥ 0. To a priori satisfy the dissipation
inequality, we introduce the Helmholtz free energy as a function of the deformation gradient, ψ = ψ(F) such that
ψ̇ = ∂ψ(F)/∂F : Ḟ, and rewrite the dissipation inequality following the Coleman–Noll entropy principle [7] as
D = [ P − ∂ψ/∂F ] : Ḟ ≥ 0. For the hyperelastic case with D .

= 0, for all possible Ḟ, the entropy inequality
.
reduces to P − ∂ψ/∂F = 0. The condition of thermodynamically consistency implies that the Piola stress P of a

4



K. Linka and E. Kuhl Computer Methods in Applied Mechanics and Engineering 403 (2023) 115731

F
g
e
t
o

M
f
o
r
i
r

F
g
d
i

M
c
o
t
ψ

t

m
T

s

k
N

P
s
i

hyperelastic, Green-elastic material is a thermodynamically conjugate function of the deformation gradient F [8],

P =
∂ψ(F)
∂F

. (11)

or our Neural Network, this implies that, rather than approximating the nine stress components P(F) as nine
eneric functions of the nine components of the deformation gradient F, we train the network to learn the free
nergy function ψ(F) and derive the stress P in a post-processing step to a priori satisfy the second law of
hermodynamics. As such, satisfying thermodynamic consistency according to Eq. (11) directly affects the output
f the Neural Network.

aterial objectivity and frame indifference. Second, we further constrain the choice of the free energy
unction ψ to satisfy material objectivity or frame indifference to ensure that the constitutive laws do not depend
n the external frame of Ref. [41]. Mathematically speaking, the Helmholtz free energy has to be invariant under
igid body motions, ψ(F) = ψ( Q · F), for all proper orthogonal tensors Q ∈ SO(3). The condition of objectivity
mplies that the arguments of the free energy function are independent of rotations and must be functions of the
ight Cauchy Green deformation tensor C [7],

P =
∂ψ(C)
∂F

=
∂ψ(C)
∂C

:
∂C
∂F

= 2 F ·
∂ψ(C)
∂C

. (12)

or our Neural Network, this implies that rather than using the nine independent components of the deformation
radient F as input, we constrain the input to the six independent components of the symmetric right Cauchy Green
eformation tensor, C = Ft

· F. As such, satisfying material objectivity according to Eq. (12) directly affects the
nput of the Neural Network.

aterial symmetry and isotropy. Third, we further constrain the choice of the free energy function ψ to include
onstraints of material symmetry, which implies that the material response remains unchanged under transformations
f the reference configuration, ψ(F) = ψ(F · Q). Here we consider the special case of isotropy for which
he material response remains unchanged under proper orthogonal transformations of the reference configuration,

(Ft
· F) = ψ( Qt

· Ft
· F · Q), for all proper orthogonal tensors Q ∈ SO(3) [1]. The condition of isotropy implies

hat the stress response functions, ψ(C) = ψ(b), must be functions of the left Cauchy Green deformation tensor,
b = F · Ft, and, together with the condition of objectivity, ψ(b) = ψ( Qt

· b · Q), that the stress response functions
ust be functions of the invariants of C and b, for example ψ(I1, I2, I3) using the set of invariants from Eq. (3).
he Piola stress for hyperelastic isotropic materials then becomes

P =
∂ψ(I1, I2, I3)

∂F
=
∂ψ

∂ I1

∂ I1

F
+
∂ψ

∂ I2

∂ I2

F
+
∂ψ

∂ I3

∂ I3

F
= 2

[
∂ψ

∂ I1
+ I1

∂ψ

∂ I2

]
F−2

∂ψ

∂ I2
F · Ft

· F+2I3
∂ψ

∂ I3
F−t . (13)

For the case of near incompressibility, instead of using the invariants I1, I2, I3, we can express the energy and
tress as functions of the invariants Ī1, Ī2, J from Eq. (7) [3],

P =
∂ψ( Ī1, Ī2, J )

∂F
= 2

1
J 2/3

[
∂ψ

∂ Ī1
+ Ī1

∂ψ

∂ Ī2

]
F −2

1
J 4/3

∂ψ

∂ Ī2
F · Ft

· F −
2
3

[
Ī1
∂ψ

∂ Ī1
+ 2 Ī2

∂ψ

∂ Ī2

]
F−t

+ J
∂ψ

∂ J
F−t .

(14)

For our Neural Network, this implies that rather than using the six independent components of the symmetric right
Cauchy Green deformation tensor C as input, we constrain the input to a set of three invariants of the right and
left Cauchy Green deformation tensors C and b, either I1, I2, I3 or Ī1, Ī2, J . In essence, considering materials with

nown symmetry classes according to Eqs. (13) or (14) directly affects, and ideally reduces, the input of the Neural
etwork.

erfect incompressibility. Fourth, we can further constrain the choice of the free energy function ψ for the
pecial case of perfect incompressibility for which the Jacobian remains one, I3 = J 2

= 1. The condition of perfect
ncompressibility implies that Eqs. (13) and (14) simplify to an expression in terms of only the first two invariants
I1 and I2,

P =
∂ψ ∂ I1

+
∂ψ ∂ I2

− p F = 2
[
∂ψ

+ I1
∂ψ

]
F − 2

∂ψ
F · Ft

· F − p F . (15)

∂ I1 F ∂ I2 F ∂ I1 ∂ I2 ∂ I2

5
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Here, p = −
1
3 P : F is the hydrostatic pressure; it represents an additional unknown that we typically determine

rom the boundary conditions. For our Neural Network, perfect incompressibility implies that rather than using the
et of three invariants of the right and left Cauchy Green deformation tensors, either I1, I2, I3 or Ī1, Ī2, J as input,
e reduce the input to a set of only two invariants, I1 and I2. Considering materials with perfect incompressibility

ccording to Eq. (15) further reduces the input of the Neural Network.

hysically reasonable constitutive restrictions. Fifth, in addition to systematically reducing the parame-
erization of the free energy ψ from the nine components of the non-symmetric deformation gradient F, via the
ix components of the symmetric right Cauchy Green deformation tensor C , to three or even two scalar-valued
nvariants I1, I2, I3 and possibly I1, I2, we can restrict the functional form of the free energy ψ by including
dditional constitutive restrictions that are both physically reasonable and mathematically convenient [1]:

i) The free energy ψ is non-negative for all deformation states,

ψ(F) ≥ 0 ∀ F . (16)

his is a condition that we can easily satisfy by adding any constant to ψ without altering the stress function.

ii) The free energy ψ is zero in the reference configuration, also known as the growth condition, and it a priori
nsures a stress-free reference configuration,

ψ(F) .= 0 for P(F) .= 0 at F = I . (17)

his is a condition that can become particularly challenging in the context of residual stresses [42], which we do
ot consider in the present manuscript.

iii) The free energy ψ is infinite at the extreme states of infinite compression, J → 0, and infinite expansion,
J → ∞,

ψ(F) → ∞ for J → 0 or J → ∞ . (18)

n addition, it seems reasonable to require that an increase in a component of the strain should be accompanied by
n increase in the corresponding component of the stress and that extreme deformations for which an eigenvalue
f the strain is zero or infinite should result in infinite stresses. For our Neural Network, to facilitate a stress-free
eference configuration according to Eq. (17), instead of using the invariants I1, I2, I3 themselves as input, we use
heir deviation from the energy- and stress-free reference state, [ I1 − 3 ], [ I2 − 3 ], [ I3 − 1 ], as input. In addition,
rom all possible activation functions, we select functional forms that comply with conditions (i), (ii), and (iii).
s such, satisfying physical considerations according to Eqs. (16), (17), and (18) directly affects the activation

unctions of the Neural Network, especially those between the last hidden layer and the output layer.

olyconvexity. Sixth, to guide the selection of the functional forms for the free energy function ψ , and ultimately
he selection of appropriate activation functions for our Neural Network, we consider polyconvexity requirements [2].
rom the general representation theorem we know that in its most generic form, the free energy of an isotropic
aterial can be expressed as an infinite series of products of powers of the invariants [43], ψ(I1, I2, I3) =
∞

j,k,l=0 a jk [I1 − 3] j [I2 − 3]k[I3 − 1]l , where a jkl are material constants. Importantly, mixed products of convex
unctions are generally not convex, and it is easier to show that the sum of specific convex subfunction usually
s [44]. This motivates a special subclass of free energy functions in which the free energy is the sum of three
ndividual polyconvex subfunctions ψ1, ψ2, ψ3, such that ψ(F) = ψ1(I1) + ψ2(I2) + ψ3(I3), is polyconvex by
esign and the stresses take the following form,

P =
∂ψ

∂F
=
∂ψ1

∂ I1

∂ I1

∂F
+
∂ψ2

∂ I2

∂ I2

∂F
+
∂ψ3

∂ I3

∂ I3

∂F
. (19)

opular polyconvex subfunctions are the power functions, ψ1(I1) = [I k
1 − 3k]i and ψ2(I2) = [I 3k/2

2 − (3
√

3)k]i

and ψ3(I3) = [I3 − 1]k , the exponential functions, ψ1(I1) = exp(ϕ1(I1)) − 1 and ψ2(I2) = exp(ϕ2(I2)) − 1,
nd the logarithmic function, ψ3(I3) = I3 − 2 ln((I3)1/2) + 4 (ln(I3)1/2)2, for non-negative coefficients, i, k ≥ 1.
or our Neural Network, this implies that we can either select polyconvex activation functions from a set of
lgorithmically predefined activation functions [13] or custom-design our own activations functions from known

olyconvex subfunctions ψ1, ψ2, ψ3 [12]. In addition, polyconvexity requirements suggest that we should carefully

6
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Fig. 1. Classical Neural Network. Example of a fully connected feed forward Neural Network with two hidden layers and eight nodes per
layer to approximate the nine components of the tensor-valued Piola stress P(F) as a function of the nine components of the tensor-valued
deformation gradient F. The upper arrows originate from the network nodes and are associated with the weights w, the lower arrows
originate from the values one and are associated with the biases b. The total number of arrows defines the number of network parameters
we need to learn during the training process. The network in this example has nw = 80 weights, nb = 17 biases, and a total number of
nθ = 97 parameters.

consider using a fully-connected network architecture, in which mixed products of the invariants I1, I2, I3 emerge
aturally. Rather, polyconvexity points towards network architectures in which the three inputs I1, I2, I3 are
ecoupled and only combined additively when we collect the entries of last hidden layer into the free energy
unction, ψ = ψ1 + ψ2 + ψ3. As such, satisfying polyconvexity, for example according to Eq. (19), generally
nforces non-negative network weights [12] and directly affects the architecture and connectedness of the Neural

Network [13].

4. Classical Neural Networks

Classical Neural Networks are versatile function approximators that are capable of learning any nonlinear
function [45]. However, as we will see, conventional off-the-shelf Neural Networks may violate the conditions
of thermodynamic consistency, material objectivity, material symmetry, incompressibility, constitutive restrictions,
and polyconvexity. In this section, we briefly summarize the input, output, architecture, and activation functions of
lassical Neural Networks to then, in the following section, modify these four elements as we design a new family
f Constitutive Artificial Neural Networks that a priori satisfy the fundamental laws of physics.

eural Network input and output. In the constitutive modeling of hyperelastic materials, we can use Neural
etworks as universal function approximators to map a second order tensor, the deformation gradient F or any
ther strain measure, onto another second order tensor, the Piola stress P or any other stress measure, according
o Eq. (10). Fig. 1 illustrates a classical Neural Network with the nine components of the deformation gradient F
s input and the nine components of the nominal or Piola stress P as output.

eural Network architecture. The architecture of the Neural Network determines how we approximate the
elation between network input and output, in our case deformation gradient F and Piola stress P . The simplest

architecture is a feed forward Neural Network in which information moves only in one direction – forward – from
the input nodes, without any cycles or loops, to the output nodes. Between input and output, the information passes
through one or multiple hidden layers. Each hidden layer consists of multiple nodes or neurons. In the simplest case
of a fully connected feed forward Neural Network, all nodes of a layer receive information from all nodes of the
previous layer, each multiplied by an individual weight, all summed up and modulated by a bias. Fig. 1 illustrates
he example of a fully connected feed forward Neural Network with an input layer composed of the deformation
radient F, two hidden layers with eight nodes per layer, and an output layer composed of the Piola stress P . Let
s denote the input as z0, the nodal values of the hidden layer k as zk , and the output as zk+1. For the example in

ig. 1 with two hidden layers, k = 1, 2, we calculate the values of each new layer from the values of the previous

7
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Fig. 2. Activation functions for Classical Neural Networks. Popular activation functions f (x) along with their derivatives f ′(x)
nclude the identity, binary step, logistic or soft step, hyperbolic tangent, inverse tangent, rectified linear unit or ReLU, parametric rectified
inear unit or PReLU, exponential linear unit or ELU, and soft plus functions. Activation functions can be continuous or discontinuous,
inear or nonlinear, and bounded or unbounded.

ayer according to the following set of equations,

z0 = F
z1 = f ( w1 z0 + b1 )
z2 = f ( w2 z1 + b2 )
z3 = w3 z2 + b3 ≈ P(F) .

(20)

ere, w are the set of network weights, b are the network biases, and f (◦) are the activation functions. In Fig. 1,
he upper arrows that originate from the nodes of the previous layer and are associated with the weights w, the
ower arrows that originate from the values one and are associated with the biases b. The total number of arrows
efines the number of network parameters we need to learn during the training process. For the fully connected
eed forward Neural Network in Fig. 1 with two hidden layers with eight nodes each, w1 ∈ R1×8, w2 ∈ R8×8,

3 ∈ R8×1, and b1 ∈ R8, b2 ∈ R8, b3 ∈ R1, resulting in nw = 8 + 8 × 8 + 8 = 80 weights and nb = 8 + 8 + 1 = 17
iases, and a total number of nθ = 97 network parameters.

ctivation functions. Activation functions translate the sum of the weighted inputs to each node into an output
ignal that will be fed into the next layer [45]. In analogy to the brain that processes input signals and decides
hether a neuron should fire or not [46], activation functions decide whether the nodal input is important or not in

he process of approximating the final function, in our case the stress P(F).
Fig. 2 illustrates the nine most popular activation functions f (x) in Neural Network modeling along with their

erivatives f ′(x). Depending on the final function we want to approximate, we can select from continuous or
iscontinuous, linear or nonlinear, and bounded or unbounded activation functions. In classical Neural Networks,
ll hidden layers typically use the same activation function, whereas the final output layer often uses a different
ctivation function. For the simple example of a feed forward fully connected Neural Network similar to Fig. 1,
ith one input z0 = F1, one output z3 = P1, and two hidden layers with two nodes per layer, z1 = [ z11, z12 ]
nd z2 = [ z21, z22 ], the system of Eqs. (20) with activation functions of hyperbolic tangent type, f (x) = tanh(x),

8
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results in the following explicit expressions,

z0 = F11
z11 = tanh ( w111 · F11 + b11 )
z12 = tanh ( w112 · F11 + b12 )
z21 = tanh ( w211 · z11 + w212 · z12 + b21 )
z22 = tanh ( w221 · z11 + w222 · z12 + b22 )
z3 = w321 · z21 + w322 · z22 + b31
P11 ≈ w321 · (tanh(w211 · tanh(w111 · F11 + b11)) + tanh(w212 · tanh(w112 · F11 + b12)) + b21)

+ w322 · (tanh(w221 · tanh(w111 · F11 + b11)) + tanh(w222 · tanh(w112 · F11 + b12)) + b22) + b31 ,

(21)

here the output of the last layer z3 approximates the true solution, P1 ≈ z3. This specific Neural Network has
1 = [w111, w112 ], w2 = [w211, w212, w221, w222 ], w3 = [w321, w322 ], and b1 = [ b11, b12 ], b2 = [ b21, b22 ],
3 = [ b31 ], resulting in nw = 2 + 2 × 2 + 2 = 8 weights and nb = 2 + 2 + 1 = 5 biases, and a total number of
θ = 13 network parameters. The set of Eqs. (21) illustrates that, for every hidden layer, we add one more level
f nested activation functions, in this case tanh(◦). The final approximated stress stretch relation P1(F1) is fairly
omplex, inherently nonlinear, and difficult if not impossible to invert explicitly. From the set of Eqs. (21), it is
lear that the network weights and biases have no clear physical interpretation.

The selection of appropriate activation functions depends on the type of prediction we expect from our model.
n constitutive modeling, where we seek to approximate the stress P as a function of the deformation gradient F,
e can immediately rule out some of the common activation functions in Fig. 2 – at least for the final output layer
when considering the physically reasonable constitutive restrictions (16), (17), and (18) from Section 3: (i) the

inary step function is discontinuous at the origin, f (−0) ̸= f (+0), which violates our general understanding that
he energy ψ and the stress P should be smooth and continuous for all hyperelastic deformations; (ii) the binary
tep function and rectified linear unit are constant over part or all of the domain, f (x) = 0 or f (x) = 1, which
iolates our general understanding that the stress P should not be constant, but rather increase with increasing
eformation F; (iii) the binary step, logistic, hyperbolic tangent, and inverse tangent functions are horizontally
symptotic, f (−∞) = 0 and f (+∞) = 1, which violates the physically reasonable constitutive restriction (18)
hat the energy and stress should not be bounded, but rather become infinite, P → ∞, for extreme deformations,
F → ∞; (iv) the rectified linear unit, parametric rectified linear unit, and exponential linear unit are continuous
ut non-differentiable at zero, f ′(−0) ̸= f ′(+0), which could be useful to model tension–compression asymmetry,
ut is not the most elegant choice to model the tension–compression transition at the origin. At the same time,
he identity, f (x) = x , and the left branch of the exponential linear unit, f (x) = α [exp(x) − 1], remind us of
he classical linear neo Hooke [35] and exponential Holzapfel [47] models. Together with the soft plus function,
f (x) = ln(1+exp(x)), they are the only three functions that are continuous, differentiable, and polyconvex [13]. This

otivates the question, can we identify existing activation functions or design our own set of activation functions
hat mimic known constitutive models, or contributions to them, and, ideally, satisfy polyconvexity requirements by
esign?

oss function. The objective of a classical Neural Network is to learn the network parameters, θ = {wk,bk} , the
etwork weights and biases, by minimizing a loss function L that penalizes the error between model and data. We
ommonly characterize this error as the mean squared error, the L2-norm of the difference between model P(Fi )
nd data P̂ i , divided by the number of training points ntrn,

L(θ; F) =
1

ntrn

ntrn∑
i=1

∥ P(Fi ) − P̂ i ∥
2

→ min . (22)

We train the network by minimizing the loss function (22) and learn the network parameters, θ = {wk,bk}, in
our case using the ADAM optimizer, a robust adaptive algorithm for gradient-based first-order optimization. With
appropriate training data, classical Neural Networks can interpolate data well, without any prior knowledge of the
underlying physics. However, they typically fail to extrapolate and make informed predictions [21]. Since they
usually have many degrees of freedom, they are inherently at risk of overfitting, especially if the available data are

sparse [48]. In addition, they may violate the thermodynamic restrictions of Section 3. This motivates the question,
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Fig. 3. Constitutive Artificial Neural Network. Family of a feed forward Constitutive Artificial Neural Networks with two hidden layers
to approximate the single scalar-valued free energy function ψ(I1, I2, I3, I4, . . .) as a function of the scalar-valued invariants I1, I2, I3, I4, . . .

of the deformation gradient F. The first layer generates powers (◦), (◦)2, (◦)3, . . . of the network input and the second layer applies
hermodynamically admissible activation functions f (◦) to these powers. Constitutive Artificial Neural Networks are typically not fully
onnected by design to a priori satisfy the condition of polyconvexity.

an we integrate physical information we already know to constrain the function P(F), prevent overfitting, and
ake the model more predictive?

. Constitutive Artificial Neural Networks

We now propose a new family of Constitutive Artificial Neural Networks that satisfy the conditions of
hermodynamic consistency, material objectivity, material symmetry, incompressibility, constitutive restrictions, and
olyconvexity by design. In the following, we discuss how this guides our selection of network input, output,
rchitecture, and activation functions to a priori satisfy the fundamental laws of physics. We also demonstrate that,
or special cases, members of this family reduce to well-known constitutive models, including the neo Hooke [35],
latz Ko [25], Mooney Rivlin [26,34], Yeoh [36], Demiray [33] and Holzapfel [47] models, and that the network
eights have a clear physical interpretation.

onstitutive Artificial Neural Network input and output. To ensure thermodynamical consistency, rather
han directly approximating the stress P as a function of the deformation gradient F, we use the Constitutive
rtificial Neural Network as a universal function approximator to map the scalar-valued invariants I1, I2, I3, I4, I5
nto the scalar-valued free energy function ψ according to Eqs. (13). The Piola stress P then follows naturally from
he second law of thermodynamics as the derivative of the free energy ψ with respect to the deformation gradient
F according to Eqs. (10) and (13). Fig. 3 illustrates a Constitutive Artificial Neural Network with the invariants I1,
I2, I3, I4 as input and the free energy ψ as output.

onstitutive Artificial Neural Network architecture. Since we seek to model a hyperelastic history-
ndependent material, we select a feed forward architecture in which information only moves in one direction,
rom the input nodes, without any cycles or loops, to the output nodes. To control polyconvexity, rather than
hoosing a fully connected feed forward network, we select a network architecture in which nodes only receive
n input from selected nodes of the previous layer. Specifically, according to Eq. (19), the nodes of the individual

nvariants are not connected, such that the free energy function does not contain mixed terms in the invariants. Fig. 3

10
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Fig. 4. Activation functions for Constitutive Artificial Neural Networks. We use custom-designed activation functions f (x) along
with their derivatives f ′(x) that include linear and quadratic mappings, either as final activation functions themselves, top rows, or combined
with exponential functions, bottom rows, to reverse engineer a free energy function that captures popular functional forms of constitutive
terms.

illustrates one possible architecture that attempts to a priori satisfy the polyconvexity condition (19) by decoupling
the information of the individual invariants. For this particular network architecture, the free energy function that
we seek to approximate takes the following format,

ψ(I1, I2, I3, I4) = w2,1 f1(w1,1 [ I1 − 3 ]1) + w2,2 f2(w1,2 [ I1 − 3 ]1) + w2,3 f3(w1,3 [ I1 − 3 ]1)
+ w2,4 f1(w1,4 [ I1 − 3 ]2) + w2,5 f2(w1,5 [ I1 − 3 ]2) + w2,6 f3(w1,6 [ I1 − 3 ]2)
+ w2,7 f1(w1,7 [ I1 − 3 ]3) + w2,8 f2(w1,8 [ I1 − 3 ]3) + w2,9 f3(w1,9 [ I1 − 3 ]3)
+ w2,10 f1(w1,10 [ I2 − 3 ]1) + w2,11 f2(w1,11 [ I2 − 3 ]1) + w2,12 f3(w1,12 [ I2 − 3 ]1)
+ w2,13 f1(w1,13 [ I2 − 3 ]2) + w2,14 f2(w1,14 [ I2 − 3 ]2) + w2,15 f3(w1,15 [ I2 − 3 ]2)
+ w2,16 f1(w1,16 [ I2 − 3 ]3) + w2,17 f2(w1,17 [ I2 − 3 ]3) + w2,18 f3(w1,18 [ I2 − 3 ]3)
+ w2,19 f1(w1,19 [ I3 − 1 ]1) + w2,20 f2(w1,20 [ I3 − 1 ]1) + w2,21 f3(w1,21 [ I3 − 1 ]1)
+ w2,22 f1(w1,22 [ I3 − 1 ]2) + w2,23 f2(w1,23 [ I3 − 1 ]2) + w2,24 f3(w1,24 [ I3 − 1 ]2)
+ w2,25 f1(w1,25 [ I3 − 1 ]3) + w2,26 f2(w1,26 [ I3 − 1 ]3) + w2,27 f3(w1,27 [ I3 − 1 ]3) + · · · .

(23)

his specific network has 5 × 3 × 3 + 4 × 3 × 3 = 90 weights for the transversely isotropic case with all five
nvariants I1, I2, I3, I4, I5 and 3 × 3 × 3 + 3 × 3 × 3 = 54 weights for the isotropic case with only three invariants
I1, I2, I3.

ctivation functions. To ensure that our network satisfies basic physically reasonable constitutive restrictions,
ather than selecting from the popular pre-defined activation functions in Fig. 2, we custom-design our own activation
unctions to reverse-engineer a free energy function that captures popular forms of constitutive terms. Specifically,
e select from linear, quadratic, cubic, and higher order powers for the first layer of the network, and from linear,

xponential, or logarithmic functions for the second layer.
Fig. 4 illustrates the four activation functions f (x) along with their derivatives f ′(x) that we use throughout

he remainder of this work. Notably, in contrast to the activation functions for classical Neural Networks in Fig. 2,
ll four functions are not only monotonic, f (x + ε) ≥ f (x) for ε ≥ 0, such that increasing deformations result in
ncreasing stresses, but also continuous at the origin, f (−0) = f (+0), continuously differentiable and smooth at the
rigin, f ′(−0) = f ′(+0), zero at the origin, f (0) = 0, to ensure an energy- and stress-free reference configuration
ccording to Eq. (17), and unbounded, f (−∞) → ∞ and f (+∞) → ∞, to ensure an infinite energy and stress
or extreme deformations according to Eq. (18).

Fig. 5 illustrates an example of an isotropic incompressible Constitutive Artificial Neural Network with two
idden layers and four and eight nodes. The first layer generates powers (◦) and (◦)2 of the network input and the
econd layer applies the identity, (◦), and the exponential function, (exp(α(◦)) − 1), to these powers. As such, the
11



K. Linka and E. Kuhl Computer Methods in Applied Mechanics and Engineering 403 (2023) 115731

o
a
s

fi
F
s
d
f

w

f

C
C
r
n

S
N
c

T
t

T
a

Fig. 5. Constitutive Artificial Neural Network. Example of an isotropic perfectly incompressible Constitutive Artificial Neural Network
with two hidden layers to approximate the single scalar-valued free energy function ψ(I1, I2) as a function of the first and second invariants

f the deformation gradient F using eight terms. The first layer generates powers (◦) and (◦)2 of the network input and the second layer
pplies the identity (◦) and exponential functions (exp(α(◦)) − 1) to these powers. The networks is not fully connected by design to a priori
atisfy the condition of polyconvexity.

rst and fifths dark red and green inputs to the free energy in Fig. 5 correspond to the linear activation function in
ig. 4, the second and sixths red and light blue inputs correspond to the quadratic activation function, the third and
evenths orange and blue inputs correspond to the linear exponential function, and the fourth and eights yellow and
ark blue inputs correspond to the quadratic exponential function. The set of equations for this networks takes the
ollowing explicit form,

ψ(I1, I2) = w2,1w1,1 [ I1 − 3 ] + w2,2 [ exp (w1,2 [ I1 − 3 ] ) − 1 ]
+ w2,3w1,3 [ I1 − 3 ]2

+ w2,4 [ exp (w1,4 [ I1 − 3 ]2 ) − 1 ]
+ w2,5w1,5 [ I2 − 3 ] + w2,6 [ exp (w1,6 [ I2 − 3 ] ) − 1 ]
+ w2,7w1,7 [ I2 − 3 ]2

+ w2,8 [ exp (w1,8 [ I2 − 3 ]2 ) − 1 ] .

(24)

For this particular format, one of the first two weights of each row becomes redundant, and we can reduce the set of
network parameters to twelve, w = [ (w1,1w2,1), w1,2, w2,2, (w1,3w2,3), w1,4, w2,4(w1,5w2,5), w1,6, w2,6, (w1,7w2,7),

1,8, w2,8 ]. Using the second law of thermodynamics, we can derive an explicit expression for the Piola stress
rom Eq. (11), P = ∂ψ/∂F, or, more specifically, for the case of perfect incompressibility from Eq. (15),
P = ∂ψ/∂ I1 · ∂ I1/∂F + ∂ψ/∂ I2 · ∂ I2/∂F,

P = [ w2,1w1,1 +w2,2w1,2 exp (w1,2 [ I1 − 3 ] )
+ 2 [ I1 − 3 ][w2,3w1,3 +w2,4w1,4 exp (w1,4 [ I1 − 3 ]2)] ∂ I1/∂F
+ [ w2,5w1,5 +w2,6w1,6 exp (w1,6 [ I2 − 3 ] )
+ 2 [ I2 − 3 ][w2,7w1,7 +w2,8w1,8 exp (w1,8 [ I2 − 3 ]2)] ∂ I2/∂F

(25)

ompared to the stress stretch relation P(F) of classical Neural Networks (21), the stress stretch relation of
onstitutive Artificial Neural Networks (25) is fairly simple by design. More importantly, the particular form (25)

epresents a generalization of many popular constitutive models for incompressible hyperelastic materials. It seems
atural to ask whether and how our network parameters w relate to common well-known material parameters.

pecial types of constitutive equations. To demonstrate that the family of Constitutive Artificial Neural
etworks in Fig. 3 and the specific example in Fig. 5 are a generalization of popular constitutive models, we

onsider several widely used models and systematically compare their material parameters to our network weights w:

he neo Hooke model [35], the simplest of all models, has a free energy function that is a constant function of only
he first invariant, [ I1 − 3 ], scaled by the shear modulus µ,

ψ =
1
2 µ [ I1 − 3 ] where µ = 2w1,1w2,1 in Eq. (24) . (26)

he Blatz Ko model [25], has a free energy function that depends only the second and third invariants, [ I2 − 3 ]
nd [ I − 1 ], scaled by the shear modulus µ, ψ =

1 µ [ I /I + 2
√

I − 5 ]. For perfectly incompressible materials,
3 2 2 3 3

12
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I3 = 1, it simplifies to the following form,

ψ =
1
2 µ [ I2 − 3 ] where µ = 2w1,5w2,5 in Eq. (24) . (27)

he Mooney Rivlin model [26,34] is a combination of both and accounts for the first and second invariants, [ I1 −3 ]
and [ I2 − 3 ], scaled by the moduli µ1 and µ2 that sum up to the overall shear modulus, µ = µ1 + µ2,

ψ =
1
2 µ1 [ I1 − 3 ] +

1
2 µ2 [ I2 − 3 ] where µ1 = 2w1,1w2,1 and µ2 = 2w1,5w2,5 in Eq. (24) . (28)

he Yeoh model [36] considers linear, quadratic, and cubic terms of only the first invariant, [I1 − 3], as

ψ = a1 [ I1−3 ]+a2 [ I1−3 ]2
+a3 [ I1−3 ]3 where a1 = 2w1,1w2,1 and a2 = 2w1,3w2,3 and a3 = 0 in Eq. (23) .

(29)

he Demiray model [33] or Delfino model [49] uses linear exponentials of the first invariant, [I1 − 3], in terms of
wo parameters a and b,

ψ =
1
2

a
b

[ exp( b [ I1 − 3 ] ) − 1 ] where a = 2w1,2w2,2 and b = w1,2 in Eq. (24) . (30)

he Treloar model [35] and Mooney Rivlin model [26,34] for nearly incompressible materials both consider a
uadratic term of the third invariant, [ J − 1 ], scaled by the bulk modulus κ , to additionally account for the bulk
ehavior,

ψ̄ =
1
2 κ [ J − 3 ]2 where κ = 2w1,13w2,13 in Eq. (23) . (31)

The Holzapfel model [47] uses quadratic exponentials of the fourth invariant, [ I4 − 1 ], in terms of two parameters
and b to additionally account for a transversely isotropic behavior,

ψ̄ =
1
2

a
b

[ exp( b [ I4 − 1 ]2 ) − 1 ] where a = 2w1,22w2,22 and b = w1,22 in Eq. (23) . (32)

These simple examples demonstrate that we can recover popular constitutive functions for which the network
weights gain a well-defined physical meaning.

Loss function. The objective of a Constitutive Artificial Neural Network is to learn the network parameters
θ = {wk} , the network weights, by minimizing a loss function L that penalizes the error between model and data.
Similar to classical Neural Networks, we characterize this error as the mean squared error, the L2-norm of the
difference between model P(Fi ) and data P̂ i , divided by the number of training points ntrn,

L(θ; F) =
1

ntrn

ntrn∑
i=1

∥ P(Fi ) − P̂ i ∥
2

→ min . (33)

While this is not the focus of the present work, in the spirit of Physics Informed Neural Networks, we could
add additional thermodynamic constraints to the loss function [9,10]. For the perfectly incompressible hyperelastic
materials we consider here, the thermodynamics are already well represented and hardwired into the network through
input, output, architecture and activation functions, and we do not need to consider this extra step. We train the
network by minimizing the loss function (33) and learn the network parameters θ = {w} using the ADAM optimizer,
a robust adaptive algorithm for gradient-based first-order optimization, and constrain the network weights to always
remain non-negative, w ≥ 0. While we could equally well solve the optimization problem (33) using a different
optimization solver, we capitalize on the power and robustness of optimizers developed for machine learning and
opt for the widely used ADAM optimizer, rather than implementing this minimization ourselves.

With only small amounts of training data, Constitutive Artificial Neural Networks can both interpolate and
extrapolate well and make informed predictions within the range of validity of the underlying thermodynamic
assumptions. Since they limit the number of degrees of freedom, they are less likely to overfit, especially if the
available data are sparse. By design, Constitutive Artificial Neural Networks are compliant with the thermodynamic
restrictions of Section 3. Most importantly, for practical applications, they do not operate as a black box; rather

they are a generalization of existing constitutive models and their parameters have a clear physical interpretation.
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Fig. 6. Special homogeneous deformation modes. Invariant-stretch relations for the special modes of perfectly incompressible uniaxial
ension with F = diag { λ, λ−1/2, λ−1/2

}, equibiaxial tension with F = diag { λ, λ, λ−2
}, and pure shear with F = diag { λ, 1, λ−1

}.

. Special homogeneous deformation modes

To demonstrate the features of our thermodynamically consistent Constitutive Artificial Neural Networks, we
onsider an isotropic, perfectly incompressible material for which the principal stretches λi and nominal stresses Pi

re related via

Pi =
∂ψ

∂λi
−

1
λi

p ∀ i = 1, 2, 3, (34)

here p denotes the hydrostatic pressure. Using the chain rule, we can reparameterize Eq. (34) in terms of the
nvariants I1 and I2, recalling the incompressibility constraint I3 = 1, such that

Pi =
∂ψ

∂ I1

∂ I1

∂λi
+
∂ψ

∂ I2

∂ I2

∂λi
−

1
λi

p ∀ i = 1, 2, 3. (35)

In the following, we summarize the deformation gradients F, the invariants I1 and I2, their derivatives ∂ I1/∂λ

nd ∂ I2/∂λ, and the resulting nominal stress P for the special homogeneous deformation modes of incompressible
niaxial tension, equibiaxial tension, and pure shear [4]. Fig. 6 summarizes the stretch-invariant relationship for all
hree cases.

niaxial tension. For the special case of incompressible uniaxial tension, we stretch the specimen in one direction,
1 = λ. From isotropy and incompressibility, I3 = λ2

1 λ
2
2 λ

2
3 = 1, we conclude that the stretches orthogonal to this

irection are the same and equal to the square root of the stretch, λ2 = λ3 = λ−1/2. The deformation gradient F
and Piola stress P for incompressible uniaxial tension follow as

F = diag { λ, λ−1/2, λ−1/2
} and P = diag { P1, 0, 0 } . (36)

We can use the explicit expressions of the first and second invariants and their derivatives,

I1 = λ2
+

2
λ

and I2 = 2λ+
1
λ2 with

∂ I1

∂λ
= 2

[
λ−

1
λ2

]
and

∂ I2

∂λ
= 2

[
1 −

1
λ3

]
, (37)

o determine the pressure p from the zero stress condition in the transverse directions, P2 = 0 and P3 = 0, using
q. (35),

p =
2
λ

∂ψ

∂ I1
+ 2

[
λ+

1
λ2

]
∂ψ

∂ I2
, (38)

and obtain an explicit analytical expression for the nominal stress P1 in terms of the stretch λ from Eq. (35),

P1 = 2
[
∂ψ

∂ I1
+

1
λ

∂ψ

∂ I2

] [
λ−

1
λ2

]
. (39)

quibiaxial tension. For the special case of incompressible equibiaxial tension, we stretch the specimen equally
n two directions, λ1 = λ2 = λ. From the incompressibility condition, I3 = λ2

1 λ
2
2 λ

2
3 = 1, we conclude that

the stretch in the third direction is λ3 = λ−2. The deformation gradient F and Piola stress P for incompressible
equibiaxial tension follow as

−2
F = diag { λ, λ, λ } and P = diag { P1, P2, 0 } . (40)

14
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Fig. 7. Special homogeneous deformation modes. Stress–stretch relations for the example of the free energy function ψ in Eq. (25)
for the special modes of perfectly incompressible uniaxial tension, equibiaxial tension, and pure shear. The eight curves highlight the linear,
quadratic, linear exponential, and quadratic exponential contributions of the first and second invariants I1 and I2 to the final stress function
P1(λ) in Eqs. (39), (43), and (47). The color-code agrees with the nodes of the Constitutive Artificial Neural Network in Fig. 5.

Using the explicit expressions of the first and second invariants and their derivatives,

I1 = 2λ2
+

1
λ4 and I2 = λ4

+
2
λ2 with

∂ I1

∂λ
= 2

[
λ−

1
λ5

]
and

∂ I2

∂λ
= 2

[
λ3

−
1
λ3

]
, (41)

we determine the pressure p from the zero stress condition in the third direction, P3 = 0, using Eq. (35),

p =
2
λ4

∂ψ

∂ I1
+

4
λ2

∂ψ

∂ I2
(42)

nd obtain an explicit analytical expression for the nominal stresses P1 and P2 in terms of the stretch λ from Eq. (35),

P1 = P2 = 2
[
∂ψ

∂ I1
+ λ2 ∂ψ

∂ I2

] [
λ−

1
λ5

]
. (43)

ure shear. For the special case of incompressible pure shear, we stretch a long rectangular specimen along its
hort axis, λ1 = λ, and assume that it remains undeformed along its long axis, λ2 = 1. From the incompressibility

condition, I3 = λ2
1 λ

2
2 λ

2
3 = 1, we conclude that the stretch in the third direction is λ3 = λ−1. The deformation

gradient F and Piola stress P for incompressible pure shear are

F = diag { λ, 1, λ−1
} and P = diag { P1, P2, 0 } . (44)

Using the explicit expressions of the first and second invariants and their derivatives,

I1 = I2 = λ2
+ 1 +

1
λ2 with

∂ I1

∂λ
=
∂ I2

∂λ
= 2

[
λ−

1
λ3

]
(45)

e determine the pressure p from the zero stress condition in the third direction, P3 = 0, using Eq. (35),

p =
2
λ2

∂ψ

∂ I1
+ 2

[
1 +

1
λ2

]
∂ψ

∂ I2
, (46)

and obtain explicit analytical expressions for the nominal stresses P1 and P2 in terms of the stretch λ from Eq. (35),

P1 = 2
[
∂ψ

∂ I1
+
∂ψ

∂ I2

] [
λ−

1
λ3

]
and P2 = 2

[
∂ψ

∂ I1
+ λ2 ∂ψ

∂ I2

] [
1 −

1
λ2

]
. (47)

Fig. 7 illustrates the stress–stretch relations for the example of the free energy function ψ(λ) in Eq. (24) for the
pecial homogeneous deformation modes of perfectly incompressible uniaxial tension, equibiaxial tension, and pure
hear. The eight curves highlight the linear, quadratic, linear exponential, and quadratic exponential contributions
f the first invariant I1, top row, and second invariant I2, bottom row, to the final stress function P1(λ) in Eqs. (39),
43), and (47). For comparison, all curves are scaled to unity. Their color code corresponds to the eight nodes of
he Constitutive Artificial Neural Network in Fig. 5. The stress contributions of the first invariant take a comparable
hape for all three deformation modes: The linear term, [ I1 − 3 ], is concave for all three modes, whereas the other

hree terms are convex. The terms of the second invariant behave similarly under uniaxial tension and pure shear:

15
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Table 1
Benchmark stress-stretch data for single-mode training. Uniaxial tension (UT) experiments for rubber at 20◦ and 50◦ [27], gum
stock and tread stock [26], and polymeric foam and rubber [25]. All reported stresses are converted from their initial units [kg/cm2] [27],
[kg/2.5 · 3.2mm2] [26], and [Psi] [25] into the unified unit [MPa].

UT UT UT UT UT UT
rubber 20◦ rubber 50◦ gum stock tread stock foam rubber
Treloar [27] Treloar [27] Mooney [26] Mooney [26] Blatz Ko [25] Blatz Ko [25]

λ P λ P λ P λ P λ P λ P
[-] [MPa] [-] [MPa] [-] [MPa] [-] [MPa] [-] [MPa] [-] [MPa]

1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.01 0.00 1.11 0.17 1.46 0.31 1.16 0.31 1.05 0.04 1.05 0.03
1.13 0.14 1.23 0.29 2.30 0.61 1.50 0.61 1.10 0.06 1.10 0.07
1.23 0.24 1.57 0.54 4.66 1.23 2.56 1.23 1.15 0.07 1.16 0.10
1.41 0.33 2.12 0.80 6.45 1.84 3.30 1.84 1.20 0.09 1.22 0.13
1.61 0.43 2.73 1.03 6.77 2.45 3.53 2.45 1.30 0.12 1.27 0.16
1.89 0.52 3.36 1.30 6.96 3.06 3.63 3.06 1.40 0.14 1.31 0.18
2.17 0.59 3.95 1.57 3.71 3.68 1.50 0.16 1.37 0.20
2.45 0.68 4.39 1.79 1.60 0.16 1.41 0.22
3.06 0.87 5.29 2.29 1.70 0.17 1.47 0.24
3.62 1.06 6.11 2.80 1.80 0.18 1.52 0.26
4.06 1.24 6.54 3.75 1.90 0.19 1.57 0.27
4.82 1.60 6.95 5.27 2.00 0.20 1.62 0.29
5.41 1.95 7.43 7.73 2.10 0.20
5.79 2.30 7.76 10.21 2.20 0.21
6.23 2.68 2.30 0.21
6.46 3.03 2.34 0.21
6.67 3.40
6.96 3.78
7.14 4.16
7.25 4.49
7.36 4.86
7.49 5.24
7.60 5.60
7.69 6.33

The linear term, [ I2 − 3 ], is concave and the other three terms are convex. For equibiaxial tension, however, all
our terms, including the [ I2 − 3 ] term, are convex. Notably, both quadratic exponential terms increase rapidly for

all six cases. In the following section, when we train our Constitutive Artificial Neural Network with real data, we
will explore how linear combinations of these eight terms, scaled by the learnt twelve network weights w, make up
he free energy function ψ(λ), and with it the stress P(λ) that best approximates the data P̂ .

. Results

To demonstrate the performance of our new family of Constitutive Artificial Neural Networks, we perform a
ystematic side-by-side comparison of classical Neural Networks and Constitutive Neural Networks using widely-
sed benchmark data for rubber elasticity. Specifically, we train and compare the fully connected two-layer
ight-term Neural Network from Fig. 1 and the two-layer eight-term Constitutive Artificial Neural Networks for
sotropic perfectly incompressible materials from Fig. 5. We consider two training scenarios, single-mode training
nd multi-mode training, for the special deformation modes of uniaxial tension, biaxial tension, and pure shear.

able 1 summarizes our benchmark data for single-mode training from uniaxial tension experiments for rubber at
0◦ and 50◦ [27], for gum stock and tread stock [26], and for polymeric foam and rubber [25]. For comparison,
e converted all reported stresses from their initial units [kg/cm2] [27], [kg/2.5 · 3.2 mm2] [26], and [Psi] [25]

nto the unified unit [MPa]. Table 2 summarizes our benchmark data for multi-mode training from uniaxial tension,
quibiaxial tension, and pure shear experiments for rubber at 20◦ and 50◦ [27]. For comparison, we multiplied the
quibiaxial stresses by their stretches and converted all reported stresses from their initial unit [kg/cm2] into the
nified unit [MPa].
16
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Table 2
Benchmark stress-stretch data for multi-mode training. Uniaxial tension (UT), equibiaxial tension (ET), and pure shear (PS)
experiments for rubber at 20◦ and 50◦ [27]. Equibiaxial stresses are multiplied by their stretches and all stresses are converted from
their initial unit [kg/cm2] into the unified unit [MPa].

UT ET PS UT ET PS
rubber 20◦ rubber 20◦ rubber 20◦ rubber 50◦ rubber 50◦ rubber 50◦

Treloar [27] Treloar [27] Treloar [27] Treloar [27] Treloar [27] Treloar [27]

λ P λ P λ P λ P λ P λ P
[-] [MPa] [-] [MPa] [-] [MPa] [-] [MPa] [-] [MPa] [-] [MPa]

1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.01 0.00 1.04 0.09 1.05 0.06 1.11 0.17 1.02 0.15 1.04 0.17
1.13 0.14 1.08 0.16 1.13 0.16 1.23 0.29 1.08 0.30 1.23 0.40
1.23 0.24 1.12 0.24 1.20 0.24 1.57 0.54 1.16 0.48 1.48 0.63
1.41 0.33 1.15 0.26 1.33 0.33 2.12 0.80 1.37 0.74 2.52 1.03
1.61 0.43 1.21 0.33 1.45 0.42 2.73 1.03 1.57 0.92 3.51 1.49
1.89 0.52 1.32 0.44 1.86 0.59 3.36 1.30 1.96 1.17 4.33 1.90
2.17 0.59 1.43 0.51 2.40 0.77 3.95 1.57 2.46 1.49 5.07 2.36
2.45 0.68 1.70 0.66 2.99 0.95 4.39 1.79 2.79 1.78 5.74 2.74
3.06 0.87 1.95 0.77 3.50 1.13 5.29 2.29 3.14 2.04 6.24 3.22
3.62 1.06 2.50 0.97 3.98 1.29 6.11 2.80 3.45 2.33 6.36 3.63
4.06 1.24 3.04 1.26 4.39 1.48 6.54 3.75 3.60 2.53 6.65 4.49
4.82 1.60 3.44 1.47 4.72 1.65 6.95 5.27 3.86 2.96 6.91 5.34
5.41 1.95 3.76 1.73 4.99 1.82 7.43 7.73 4.11 3.24 7.06 6.23
5.79 2.30 4.03 1.97 7.76 10.21 4.60 4.24 7.26 7.00
6.23 2.68 4.26 2.23 5.06 6.15 7.42 7.89
6.46 3.03 4.45 2.45 5.28 6.99 7.56 9.18
6.67 3.40 5.42 8.18 7.83 10.90
6.96 3.78 5.59 9.87
7.14 4.16 5.67 11.59
7.25 4.49
7.36 4.86
7.49 5.24
7.60 5.60
7.69 6.33

Classical Neural Networks can describe data well but cannot predict beyond the training regime.
Fig. 8 illustrates the effect of network depth and breadth for six classical fully connected feed forward Neural
Networks with one and two layers and two, four, and eight nodes. The number of network weights and biases
increases with increasing number of layers and nodes: The simplest model with one hidden layer and two nodes
has nw = 2 + 2 = 4 weights and nb = 2 + 1 = 3 biases and a total number of nθ = 7 network parameters; the most
omplex model with two hidden layers and eight nodes has nw = 8+8×8+8 = 80 weights and nb = 8+8+1 = 17
iases and a total number of nθ = 97 network parameters. For this example, for all nodes, we use the hyperbolic
angent activation function according to Fig. 2. Specifically, the network with two layers and two nodes uses the
et of Eqs. (21). The networks learn the approximation of the Piola stress P(λ) as a function of the stretch λ using
he uniaxial tension data P̂ for rubber at 20◦ [27] from Tables 1 and 2. The dots illustrate the training data P̂ and
he color-coded areas highlight the contributions of the color-coded nodes to the final stress function P(λ). First
nd foremost, all six networks robustly approximate the stress P(λ) as a function of the stretch λ with virtually no
rror compared to the dots of the experimental data P̂ . In general, the cost of training a Neural Network increases
ith the number of nodes per layer and with the number of layers. Similar to a mesh refinement in a finite element

nalysis, in the spirit of h-adaptivity, we expect the approximation to improve with increasing network breadth and
epth. The dots in Fig. 8 indicate that the behavior of rubber under uniaxial tension is nonlinear, but monotonic and
airly smooth [27]. As a result, all six networks perform exceptionally well at describing or interpolating the data
ithin the training regime of 1 ≤ λ ≤ 8, even the simplest network with only one layer and two nodes. However,

ll six networks do a poor job at predicting or extrapolating the behavior outside the training regime for λ > 8.

lassical Neural Networks perform well for big data but tend to overfit sparse data. Fig. 9 illustrates
he performance of classical Neural Networks for different uniaxial tension data. For this example, we use a fully
17
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f
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t

Fig. 8. Classical Neural Networks. Effect of network depth and breadth. Piola stress P(λ) as a function of the stretch λ for six
ully connected feed forward Neural Networks with one and two layers and two, four, and eight nodes using the hyperbolic tangent activation
unction from Fig. 2. Dots illustrate the uniaxial tension data P̂ for rubber at 20◦ [27] from Tables 1 and 2; color-coded areas highlight
he contributions of the color-coded nodes to the final stress function P(λ).

Fig. 9. Classical Neural Network. Uniaxial tension. Piola stress P(λ) as a function of the stretch λ for a fully connected feed forward
Neural Network with one layer, eight nodes, 16 weights, and nine biases, using the hyperbolic tangent activation function from Fig. 2. Dots
illustrate the uniaxial tension data P̂ for rubber at 20◦ and 50◦ [27], gum stock and tread stock [26], and polymeric foam and rubber [25]
from Table 1; color-coded areas highlight the contributions of the color-coded nodes to the final stress function P(λ).

connected feed forward Neural Network with one layer, eight nodes, 16 weights, nine biases, and the hyperbolic
tangent activation function from Fig. 2 for all nodes. The network learns the approximation of the Piola stress P(λ)
as a function of the stretch λ using the uniaxial tension data P̂ for rubber at 20◦ and 50◦ [27], gum stock and
tread stock [26], and polymeric foam and rubber [25] from Table 1. The dots illustrate the training data P̂ and the
color-coded areas highlight the contributions of the color-coded nodes to the final stress function P(λ). In general,
our observations agree with Fig. 8 and suggest that classical Neural Networks robustly interpolate uniaxial tension
data for rubber for all six experiments. However, for the example of gum stock with only seven data points and
nθ = 25 network parameters, we observe oscillations in the approximated stress function P(λ) in the center region
between 2.4 ≤ λ ≤ 6.4, where we only have one data point. These oscillations are a result of negative weights in
the final output layer that make the approximated function non-convex. While this single example is by no means
a rigorous mathematical proof, it supports the general notion that classical Neural Networks fit big data well but
tend to overfit sparse data.
18
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Fig. 10. Classical Neural Network. Uniaxial tension, equibiaxial tension, and pure shear. Piola stress P(λ) as a function of the
tretch λ for a fully connected feed forward Neural Network with one layer, eight nodes, 16 weights, and nine biases, using the hyperbolic
angent activation function from Fig. 2. Dots illustrate the uniaxial tension, equibiaxial tension, and pure shear data P̂ for rubber at 20◦ and
0◦ [27] from Table 2; color-coded areas highlight the contributions of the color-coded nodes to the final stress function P(λ) for individual
ingle-mode training.

lassical Neural Networks perform well for multi-mode data but provide no physical insight. Fig. 10
llustrates the performance of classical Neural Networks for multi-mode data, trained individually for each mode.
imilar to the previous example, we use a fully connected feed forward Neural Network with one layer, eight nodes,
6 weights, nine biases, and the hyperbolic tangent activation function from Fig. 2 for all nodes. The network learns
he approximation of the Piola stress P(λ) as a function of the stretch λ and trains individually on the uniaxial
ension, equibiaxial tension, and pure shear data for rubber at 20◦ and 50◦ [27] from Table 2. The dots illustrate
he training data P̂ and the color-coded areas highlight the contributions of the color-coded nodes to the final stress
unction P(λ). The network performs robustly on all six training sets and generates stress approximations P(λ) that
t the stress–stretch data well, even for the S-shaped curves and in the presence of pronounced stretch stiffening.
or all six cases, the loss function rapidly decreases by four orders of magnitude within less than 20,000 epochs
nd the error between model P(λ) and data P̂ is virtually invisible from the graphs. The full color spectrum in
ach graph suggests that all eight nodes contribute to the final stress approximation and that all weights between the
ast hidden layer and the output layer are non-zero. We conclude that we can robustly learn the nθ = 25 network
eights and biases from multi-modal training data; yet, these parameters have no physical meaning and do not

ontribute to interpreting or explaining the physics of rubber under uniaxial tension, equibiaxial tension, or pure
hear.

onstitutive Artificial Neural Networks describe and predict well and prevent overfitting. Fig. 11
emonstrates the performance of our new class of Constitutive Artificial Neural Networks for different uniaxial
ension data. For this example, we use the feed forward Constitutive Artificial Neural Network from Fig. 5 with
wo layers, eight nodes, and twelve weights using the custom-designed activation functions from Fig. 4. The network
earns the approximation of the free energy as a function of the invariants ψ(I1, I2), where pre-processing generates
he invariants as functions of the stretch I1(λ), I2(λ), and post-processing generates the stress as a function of the
ree energy P(ψ). The network trains on the uniaxial tension data P̂ for rubber at 20◦ and 50◦ [27], gum stock
nd tread stock [26], and polymeric foam and rubber [25] from Table 1. The dots illustrate the training data P̂ and
he color-coded areas highlight the contributions of the color-coded nodes to the final stress function P(λ). First
nd foremost, similar to the classical Neural Network in Fig. 9, the new Constitutive Artificial Neural Network in
ig. 11 performs robustly on all six training sets and learns stress functions P(λ) that approximate the stress–stretch
ata well, even for S-shaped curves and in the presence of pronounced stretch stiffening. For all six cases, the loss
unction rapidly decreases by four orders of magnitude within less than 10,000 epochs and the error between model
P(λ) and data P̂ is virtually invisible from the graphs. In contrast to the Neural Network example in Fig. 8 where
19
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Fig. 11. Constitutive Artificial Neural Network. Uniaxial tension. Piola stress P(λ) as a function of the stretch λ for the feed forward
onstitutive Artificial Neural Network from Fig. 5 with two layers, eight nodes, and twelve weights using the custom-designed activation

unctions from Fig. 4. Dots illustrate the uniaxial tension data P̂ for rubber at 20◦ and 50◦ [27], gum stock and tread stock [26], and
olymeric foam and rubber [25] from Table 1; color-coded areas highlight the contributions of the color-coded nodes to the final stress
unction P(λ).

Fig. 12. Constitutive Artificial Neural Network. Effect of initial conditions and non-uniqueness. Six Piola stresses P(λ) as
unctions of the stretch λ for the feed forward Constitutive Artificial Neural Network from Fig. 5 with two layers, eight nodes, and 12
eights, initialized with six different sets of initial conditions. Dots illustrate the uniaxial tension data P̂ for rubber at 20◦ [27] from Table 1;

olor-coded areas highlight the contributions of the color-coded nodes to the stress functions P(λ) for six different sets of initial conditions.

he learned stresses flatline abruptly outside the training regime, all six stress approximations continue smoothly
eyond the initial training regime. In contrast to the gum stock example with only seven data points in Fig. 9,
he Constitutive Artificial Neural Network generates smooth non-oscillatory stresses P(λ), even in regions with
parse data. These observations suggest that our new Constitutive Artificial Neural Networks succeed at describing,
redicting, and preventing overfitting, even in regions where data are sparse.

onstitutive Artificial Neural Networks generate non-unique solutions for insufficiently rich data.
ig. 12 illustrates the effect of the initial conditions for the feed forward Constitutive Artificial Neural Network
rom Fig. 5 with two layers, eight nodes, and twelve weights, and the custom-designed activation functions from
ig. 4. For this example, we initialize the twelve network weights with six different sets of randomly generated
umbers and compare their contributions to the final stress approximation P(λ) as an indicator for the magnitude
20
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Fig. 13. Constitutive Artificial Neural Network. Uniaxial tension, equibiaxial tension, and pure shear. Piola stress P(λ) as a
unction of the stretch λ for the feed forward Constitutive Artificial Neural Network from Fig. 5 with two layers, eight nodes, and twelve
eights using the custom-designed activation functions from Fig. 4. Dots illustrate the uniaxial tension, equibiaxial tension, and pure shear
ata P̂ for rubber at 20◦ and 50◦ [27] from Table 2; color-coded areas highlight the contributions of the color-coded nodes to the final
tress function P(λ) for individual single-mode training.

f the learned weights. The dots indicate the uniaxial tension data P̂ for rubber at 20◦ [27] from Table 1, and
he color-coded areas highlight the contributions of the color-coded nodes to the stress functions P(λ) for the six
ifferent sets of initial conditions. First and most importantly, within less than 10,000 epochs, all six sets of initial
onditions robustly converge towards a set of weights that reduce the loss function by more than four orders of
agnitude and interpolate the training equally data well. Interestingly, in contrast to the classical Neural Network

raphs in Figs. 9 and 10, none of the six graphs in Fig. 12 covers the full color spectrum. This suggests that only
subset of the eight nodes of the last hidden layer contribute to the final stress approximation, while most of the
eights between the last hidden layer and the output layer train to zero. For example, the fourth graph approximates

he stress exclusively in terms of the third and fifth terms, [ I1 − 3 ]2 and [I2 − 3], whereas the fifth graph uses the
rst, sixths, and eights terms, [I1 −3], [exp([I2 −3])−1], and, [exp([I2 −3]2)−1]. From comparing the curves and

the colored stress contributions in all six graphs, we conclude that the selection of weights that best approximate
the stress–stretch relation is non-unique. While this is also true and well-known for classical Neural Networks,
it is unfortunate for Constitutive Artificial Neural Networks since we attempt to correlate the network weights to
constitutive parameters with a clear physical interpretation. It seems natural to ask whether this non-uniqueness
is an inherent property of the Constitutive Artificial Neural Network itself or rather a result of insufficiently rich
training data.

Constitutive Artificial Neural Networks are a natural generalization of existing constitutive models.
Fig. 13 illustrates the performance of Constitutive Artificial Neural Networks for multi-mode data, trained
individually for each mode. Similar to the previous two examples, we use the feed forward Constitutive Artificial
Neural Network from Fig. 5 with two layers, eight nodes, and twelve weights using the custom-designed activation
functions from Fig. 4. The network learns the approximation of the free energy as a function of the invariants
ψ(I1, I2) and trains individually on the uniaxial tension, equibiaxial tension, and pure shear data for rubber at 20◦

and 50◦ [27] from Table 2. Similar to the classical Neural Network in Fig. 10, the Constitutive Artificial Neural
Network in Fig. 13 performs robustly on all six training sets and generates stress functions P(λ) that approximate
the stress–stretch data P̂ well, even for the S-shaped curves and in the presence of pronounced stretch stiffening.
Similar to the previous example, none of the six graphs in Fig. 13 covers the full color spectrum and most of
the weights between the last hidden layer and the output layer train to zero. Interestingly, some of the non-zero
terms correlate well with the widely-used constitutive models for rubber elasticity: The dominant dark red [ I1 − 3 ]
term for the 20◦ equibiaxial tension data correlates well with the classical neo Hooke model [35] in Eq. (26), the
dominant green [ I1 − 2 ] term for the 20◦ pure shear data correlates well with the Blatz Ko model [25] in Eq. (27),
21
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Fig. 14. Constitutive Artificial Neural Network. Uniaxial tension, equibiaxial tension, and pure shear. Piola stress P(λ) as a
unction of the stretch λ for the feed forward Constitutive Artificial Neural Network from Fig. 5 with two layers, eight nodes, and twelve
eights using the custom-designed activation functions from Fig. 4. Dots illustrate the uniaxial tension, equibiaxial tension, and pure shear
ata P̂ for rubber at 20◦ and 50◦ [27] from Table 2; color-coded areas highlight the contributions of the color-coded nodes to the final
tress function P(λ) for simultaneous multi-mode training.

he interacting [ I1 −1 ] and [ I1 −2 ] terms for the 20◦ and 50◦ pure shear data correlate well with the Mooney Rivlin
odel [26,34] in Eq. (28), and the dominant [exp([I1 − 3])] term for the 50◦ uniaxial and equibiaxial tension data

orrelates well with the Demiray model [33] in Eq. (30). This suggests that Constitutive Artificial Neural Networks
re a generalization of existing constitutive models that naturally self-select terms from subsets of well-known
onstitutive models that best explain the data.

onstitutive Artificial Neural Networks identify a single unique model and parameter set for
ufficient data. Fig. 14 illustrates the performance of Constitutive Artificial Neural Networks for multi-mode data,

rained simultaneously for all three modes. Similar to the previous examples, we use the feed forward Constitutive
rtificial Neural Network from Fig. 5 with two layers, eight nodes, and twelve weights using the custom-designed

ctivation functions from Fig. 4. The network learns the approximation of the free energy as a function of the
nvariants ψ(I1, I2) and trains simultaneously on the uniaxial tension, equibiaxial tension, and pure shear data for
ubber at 20◦ and 50◦ [27] from Table 2. Overall, the network trains robustly and uniquely for multi-mode data,
oth for the 20◦ and the 50◦ training sets. It is insensitive to the initial conditions and repeatedly converges towards
he same set of weights to reduce the loss function by more than four orders of magnitude within less than 10,000
pochs. Similar to the other Constitutive Artificial Neural Network examples, and in contrast to the classical Neural
etwork, the final approximation uses only a subset of non-zero weights, while most of the weights are zero.
ompared to the individual single-mode training in Fig. 13, the simultaneous multi-mode training in Fig. 14 seeks

o approximate all three deformation modes simultaneously at the cost of a perfect fit: While the stress approximation
P(λ) slightly underestimates the training stress P̂ in equibiaxial tension, it slightly overestimates the training stress
P̂ in the stiffening region in uniaxial tension and pure shear. Most importantly though, the Constitutive Artificial

eural Network robustly identifies one unique model and parameter set for rubber at 20◦ and one set for rubber at
0◦. For the low-temperature regime, the free energy reduces to a three-term function in terms of the first invariant
nd the linear exponentials of the first and second invariants,

ψ(I1, I2) =
1
2
µ1 [ I1 − 3 ] +

1
2

a1

b1
[ exp( b1[ I1 − 3 ]) − 1 ] +

1
2

a2

b2
[ exp( b2[ I2 − 3 ]) − 1 ] . (48)

t introduces five network weights that translate into five physically meaningful parameters with well-defined
hysical units, the shear modulus, µ1 = 2w1,1w2,1 = 0.2370 MPa, the stiffness-like parameters a1 = 2w1,2w2,2 =

.0582 MPa and a2 = 2w1,6w2,6 = 0.0013 MPa, and the unit-less exponential coefficients b1 = w1,2 = 0.0387 and

2 = w1,6 = 0.0022. For the high-temperature regime, the free energy reduces to a three-term function in terms of
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the first and second invariants and the linear exponential of the first invariant,

ψ(I1, I2) =
1
2
µ1 [ I1 − 3 ] +

1
2
µ2 [ I1 − 3 ] +

1
2

a1

b1
[ exp( b1[ I1 − 3 ] ) − 1 ] . (49)

t introduces four network weights that translate into four physically meaningful parameters with well-defined
hysical units, the shear moduli, µ1 = 2w1,1w2,1 = 0.2830 MPa and µ2 = 2w1,5w2,5 = 0.0141 MPa, the stiffness-
ike parameter a1 = 2w1,2w2,2 = 0.0434 MPa, and the unit-less exponential coefficient b1 = w1,2 = 0.0541.
his example suggests that the non-uniqueness of the fit in Fig. 12 is not an inherent problem of Constitutive
rtificial Neural Networks per se, but rather a problem of insufficiently rich data to appropriately train the network.
ith multi-mode data from uniaxial tension, biaxial tension, and pure shear, our Constitutive Artificial Neural
etwork trains robustly and uniquely and simultaneously learns both model and parameters. Interestingly, the

raining autonomously selects a subset of weights that activate the relevant terms to the free energy function,
hile the remaining weights train to zero. This suggests that Constitutive Artificial Neural Networks are capable of

dentifying a free energy function and its material parameters – out of a broad spectrum of functions and parameters
to best explain the data.

. Discussion

onstitutive Artificial Neural Networks simultaneously learn both model and parameters. For
ecades, chemical, physical, and material scientists alike have been modeling the hyperelastic response of rubber
nder large deformations [4,25–27,50]. They have proposed numerous competing constitutive models to best
haracterize the behavior of artificial and biological polymers and calibrated the model parameters in response
o different modes of mechanical loading [33,38,47,51–56]. Here we propose a radically different approach towards
onstitutive modeling and abandon the common strategy to first select a constitutive model and then tune its
arameters by fitting the model to data. Instead, we propose a family of Constitutive Artificial Neural Networks
hat simultaneously learn both the constitutive model and its material parameters.

lassical Neural Networks ignore the underlying physics. In the most general form, constitutive equations
n solid mechanics are tensor-valued tensor functions that define a second order stress tensor, in our case the Piola
tress, as a function of a second order deformation or strain measure, in our case the deformation gradient [7,8].
lassical Neural Networks are universal function approximators that learn these functions [45], in our case the

tress, from training data, in our case experimentally measured stress–strain data, by minimizing a loss function,
n our case the mean squared error between model and data stress. Neural Networks have advanced as a powerful
echnology to interpolate or describe big data; yet, they fail to extrapolate or predict scenarios beyond the training
egime [21]. They are an excellent choice when we have no information about the underlying data, but in constitutive
odeling, they entirely ignore our prior knowledge and thermodynamic considerations [48].

onstitutive Artificial Neural Networks include kinematical, thermodynamical, and physical con-
traints. The general idea of this manuscript is to design a new family of Neural Networks that inherently satisfy
ommon kinematical, thermodynamical, and physical constrains while, at the same time, constraining the design
pace of all admissible functions to make the network robust and reliable, even in the presence of small training data.
ur approach is to reverse-engineer Constitutive Artificial Neural Networks that are, by design, a generalization of
idely used and commonly accepted constitutive models with well-defined physical parameters [37,38]. Towards

his goal we revisit the non-linear field theories of mechanics [1,7,8] and suggest to constrain the network
utput to enforce thermodynamic consistency; the network input to enforce material objectivity, and, if desired,
aterial symmetry and incompressibility; the activation functions to implement physically reasonable constitutive

estrictions; and the network architecture to ensure polyconvexity.

onstitutive Artificial Neural Networks are a generalization of popular constitutive models. We proto-
ype the design of Constitutive Artificial Neural Networks for the example of an isotropic perfectly incompressible
eed forward network with two hidden layers and twelve weights that takes the scalar-valued first and second
nvariants of the deformation gradient, [ I1 − 3 ] and [ I2 − 3 ], as input and approximates the scalar-valued free
nergy function, ψ(I1, I2), as output. The first layer generates the first and second powers, ( ◦ ) and ( ◦ )2, of the
nput and the second layer applies the identity and the exponential, ( ◦ ) and (exp(α(◦)) − 1), to these powers. This

esults in eight individual subfunctions that additively feed into the final free energy function ψ from which we
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derive the Piola stress, P = ∂ψ/∂F, following standard arguments of thermodynamics. We demonstrate that the
approximated free energy function of our network is a generalization of popular constitutive models with the neo

ooke [35], Blatz Ko [25], Mooney Rivlin [26,34], Yeoh [36], and Demiray [33] models as special cases. Most
mportantly, through a direct comparison with these models, the twelve weights of the network gain a clear physical
nterpretation.

lassical Neural Networks can interpolate robustly, but fail to extrapolate. In a side-by-side comparison
ith a classical Neural Network, we demonstrate the features of our new Constitutive Artificial Neural Network

or several classical benchmark data sets for rubber in uniaxial tension [25–27], equibiaxial tension [27], and pure
hear [27]. Both methods robustly identify functions that approximate the data well and reduce the error between
odel and data within less than 10,000 epochs: The classical Neural Network, without any prior knowledge of the

nderlying physics, directly learns the stress as a function of the deformation gradient, P(F), while the Constitutive
Artificial Neural Network learns the free energy as a function of the strain invariants, ψ(I1, I2). Our results in Fig. 8
upport the general notion that classical Neural Networks describe or interpolate data well, but cannot predict or
xtrapolate the behavior outside the training regime [21]. We also confirm in Fig. 9 that they fit big data well,
ut tend to overfit sparse data [48]. To quickly assess the importance of the individual nodes, we color-code their
utputs and visually compare their contributions to the final output layer. From the color spectrum in Fig. 10, we
onclude that classical Neural Networks tend to activate all nodes of the final layer with non-zero weights, but that
hese weights have no physical meaning and do not contribute to interpret or explain the underlying physics.

onstitutive Artificial Neural Networks robustly learn both model and parameters, even for sparse
ata. Our new family of Constitutive Artificial Neural Network addresses the limitations of conventional classical
eural Networks by including thermodynamic considerations by design. Fig. 11 suggests that they are both
escriptive and predictive, without overfitting the data. From the reduced color spectra in Figs. 12 and 13, we
onclude that our networks self-select subsets of activation functions, while most of their weights remain zero.
ig. 13 also shows that, for insufficiently rich data, the network still approximates the overall function ψ(I1, I2)
obustly, but the distribution of the individual contributions of the I1 and I2 terms is non-unique. Enriching the
raining data by multi-mode data from uniaxial tension, equibiaxial tension, and pure shear in Fig. 14 eliminates
hese non-uniqueness. This suggests that, when trained with sufficiently rich data, Constitutive Artificial Neural
etworks simultaneously learn both a unique model and parameter set.

onstitutive Artificial Neural Networks enable automated model discovery. For the example of rubber
n the high and low temperature regimes, our new Constitutive Artificial Neural Network discovers two three-
erm models in terms of the first and second invariants, 1

2µ2 [ I1 − 3 ] and 1
2µ2 [ I2 − 3 ], similar to the classical

Mooney Rivlin model [26,34], and in terms of their linear exponentials, 1
2 a1[ exp(b1 [I1 − 3]) − 1]/b1 and

1
2 a2[ exp(b2 [I2−3])−1]/b2, similar to the Demiray model [33]. The non-zero network weights take the interpretation
of the shear moduli, µ1 and µ2, stiffness-like parameters, a1 and a2, and exponential coefficients, b1 and b2 of
these models. Since the network autonomously self-selects the model and parameters that best approximate the
data, the human user no longer needs to decide which model to choose. The underlying concept has elements that
are more commonly seen in sparse system identification [57], for example, with applications to model discovery in
developmental biology [58] or in the characterization of soft materials [59], where the identification process self-
selects the relevant terms from a library of admissible terms. Yet, instead of designing the identification algorithms
from scratch, our scientific model discovery capitalizes on existing robust algorithms that have been developed
and proven successful for classical neural networks. This could have enormous implications, for example in finite
element simulations: Instead of selecting a specific material model from a library of available models, finite element
solvers could be built around a single generalized model, the Constitutive Artificial Neural Network autonomously
discovers the model from data, populates the model parameters, and activates the relevant terms.

Current limitations and future applications. In the present work, we have shown the application of
Constitutive Artificial Neural Networks for the special case of perfectly incompressible isotropic hyperelastic
materials according to Fig. 5. It is easy to see that the general concept in Fig. 3 extends naturally to compressible
or nearly incompressible materials with other symmetry classes, transversely isotropic or orthotropic, simply by
xpanding the network input to other sets of strain invariants. A more involved extension would be to consider
24
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history-dependent, inelastic materials, for example by replacing the feed forward architecture through a long short-
term memory network with feedback connections [60], while still keeping the same overall network input, output,
activation functions, and basic architecture. In parallel, we could revisit the network architecture in Fig. 3 by
expressing the free energy as a truncated infinite series of products of powers of the invariants, which would result
in a fully connected feed forward network architecture. This would be critical to capture more complex materials
for which the invariants are coupled, including arteries [47] or the brain [61]. One limitation we foresee for these
more complex networks, is that the majority of weights might no longer train to zero. If the network learns a large
set of non-zero weights, and with them, activates too many terms that feed into the final free energy function, we
could reduce the model to the most relevant terms by network pruning, a neurologically inspired process in which
the network gradually self-eliminates less relevant connections from its overall architecture [46]. Of course, we
could also always enforce certain weights to zero, recover a popular subclasses of models, and use the Constitutive
Artificial Neural Network for a plain inverse analysis and parameter identification. Finally, one important extension
would be to embed the network in a Bayesian framework to supplement the analysis with uncertainty quantification.
Instead of simple point estimates for the network parameters, a Bayesian Constitutive Artificial Neural Network
would learn parameter distributions with means and credible intervals. In contrast to classical Bayesian Neural
Networks, here, these distributions would have a clear physical interpretation, since our network weights have a
well-defined physical meaning.

9. Conclusion

Constitutive Artificial Neural Networks are a new family of neural networks that satisfy kinematical, thermody-
namical, and physical constraints by design, and, at the same time, constrain the space of admissible functions to
train robustly, even for space data. In contrast to classical Neural Networks, they can describe, predict, and explain
data and reduce the risk of overfitting. Constitutive Artificial Neural Networks integrate more than a century of
knowledge in continuum mechanics and modern machine learning to create Neural Networks with specific network
input, output, activation functions, and architecture to a priori guarantee thermodynamic consistency, material
objectivity, material symmetry, physical restrictions, and polyconvexity. The resulting network is a generalization
of widely used popular constitutive models with network weights that have a clear physical interpretation. When
trained with sufficiently rich data, Constitutive Artificial Neural Networks can simultaneously learn both a unique
model and set of parameters, while most of the network weights train to zero. This suggests that Constitutive
Artificial Neural Networks have the potential to enable automated model discovery and could induce a paradigm
shift in constitutive modeling, from user-defined to automated model selection and parameterization.
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